ABSTRACT
The purpose of this research is to study direct, indirect, and total influence of variables on competitive advantage in the logistics service industry of logistics Service the DKSH Thailand. In addition, it is to develop the structural equation model of variables that has influence on competitive advantage of logistics Service the DKSH Thailand. The research was conducted in the form of mixed methods research that included quantitative and qualitative research. In a quantitative part, the survey data was collected by questionnaire from a sample size of 260 persons service providers. Furthermore, for a qualitative part, in-depth interview was performed from executives and management of logistics Service the DKSH Thailand. A statistical software package was used to analyze statistical data including percentage, mean, standard deviation, skewness, kurtosis, and reliability of the questionnaire. It is also used to perform confirmatory factor analysis (CFA) and structural model equation analysis. The results were as follows. From confirmatory factor analysis, it was found that the measurement pattern was consistent with empirical data and theory. Standard regression weight was found to be between 0.592-0.880. Squared multiple correlation (R2) was 0.350-0.774, and the structural model equation analysis showed that the model fit in with the empirical data. The hypothesis test values were as follow: Chi-square (2χ) = 92.952, df = 57, p = .002, CMIN / DF (2χ/ df) = 1.631, GFI = .956, CFI = .987, AGFI = .918, NFI = .967 and RMSEA = .048. This was meant that the model could describe 91% of the variance of competitive advantage (R2= .91). Likewise, the study had found that innovation, collaboration, and logistics capabilities had direct, indirect and total influence in a positive way on the competitive advantage of the logistics service Industry in Thailand. Therefore, it is important that the logistics Service the DKSH Thailand should promote and support cooperation within the segment as well as to boost innovation in order to elevate competitive advantage and develop this logistics service provider industry.

KEYWORDS:
Innovation, corroboration, logistics capability, competitive advantage, logistics service provider, and structural equation model

INTRODUCTION
Today the logistic world is facing major pressures due to the globalization of markets. Internal and external organizational pressures have led to increased competition, market complexity, and new customer demands. It has been noted how organizations adopt lean or agile manufacturing strategies to overcome this problem. These strategies have different approaches and elements to address in the design of the manufacturing system, but they all depend on two common things: acquiring technology and the effective operation of this technology by process (B. Almannai, R. Greenough, J. Kay, 2008).
Supply chain partners and their roles in stationery items for logistics process innovation

OBJECTIVES

The main objective of the study is to direct influence Indirect influence and overall influence of variables on competitive advantage in The business industry provides of logistics Service the DKSH Thailand, Develop a model, equation, structure of variables with Influence on Competitive Advantage in the Service Industry of logistics Service the DKSH Thailand. and use the analysis results to develop an effective management model.

METHODOLOGY

This study was conducted using qualitative design. The research was conducted in the form of mixed methods research that included quantitative and qualitative research. In a quantitative part, the survey data was collected by questionnaire from a sample size of 260 logistics service providers. Furthermore, for a qualitative part, in-depth interview was performed from executives and management of logistics Service the DKSH Thailand. A statistical software package was used to analyze statistical data including percentage, mean, standard deviation, skewness, kurtosis, and reliability of the questionnaire. It is also used to perform confirmatory factor analysis (CFA) and structural model equation analysis. The results were as follows. From confirmatory factor analysis, it was found that the measurement pattern was consistent with empirical data and theory.

RESULTS AND DISCUSSION

The results were as follows. From confirmatory factor analysis, it was found that the measurement pattern was consistent with empirical data and theory. Standard regression weight was found to be between 0.592-0.880. Squared multiple correlation (R2) was 0.350-0.774, and the structural model equation analysis showed that the model fit in with the empirical data. The hypothesis test values were as follow: Chi-square (χ^2) = 92.952, df

International Journal of Engineering Technology Research & Management

\[= 57, \ p = .002, \text{CMIN} / \text{DF} (2\chi/ \text{df}) = 1.631, \ GFI = .956, \ CFI = .987, \ AGFI = .918, \ NFI = .967 \text{ and RMSEA = .048.} \]

This was meant that the model could describe 91% of the variance of competitive advantage (R² = 0.91). Likewise, the study had found that innovation, collaboration, and logistics capabilities had direct, indirect and total influence in a positive way on the competitive advantage of the logistics Service the DKSH Thailand. Therefore, it is important that of logistics Service the DKSH Thailand should promote and support cooperation within the segment as well as to boost innovation in order to elevate competitive advantage and develop this logistics service provider industry.

ACKNOWLEDGEMENT

The study had found that innovation, collaboration, and logistics capabilities had direct, indirect and total influence in a positive way on the competitive advantage of the logistics Service DKSH Thailand. Therefore, it is important that the logistics service provider industry in Service DKSH Thailand should promote and support cooperation within the segment as well as to boost innovation in order to elevate competitive advantage and develop this logistics Service DKSH Thailand. Service provider industry.

CONCLUSION

The model is harmonious with the empirical data. (Model Fit) With test values as follows:

\[\chi^2 = 92.952, \ \text{df} = 57, \ p = .002, \text{CMIN/DF} (2\chi/ \text{df}) = 1.631, \ GFI = .956, \ CFI = .987, \ AGFI = .918, \ NFI = .967 \text{ and RMSEA = .048}. \]

REFERENCES

