
ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [29]

CONCISE METHODOLGY FOR DEVELOPMENT OF COMPLEX DIGITAL

ELECTRONIC SYSTEMS

Marcus Lloyde George
Ultimate Virtual Market Limited, San Fernando, Trinidad and Tobago

marcus.george99@yahoo.com

ABSTRACT
Development of simple digital electronic circuits can be easily done using combinational logic theory

such as Boolean Algebra and Karnaugh Maps, along with tools such as Xilinx Schematic Editor. Even

medium-sized systems can be developed this way. What about complex digital electronics systems?

Utilizing the same procedure may be tedious and hence will be best done using a more effective and

structured procedure, along with use of hardware descriptive languages. This paper therefore presents

a concise methodology for the development of complex digital electronics systems. The paper will

focus on all aspects including the specification, formal specification and modelling of the system, the

choice of development platforms, hardware description, and even the formal verification and

validation of such system. An example will be used as the basis of the formal specification and

modelling aspect of the paper to ensure that readers can quickly absorb the material presented. The

author intends for the contents of this paper to be informative and expects that developing digital

design engineers find this methodology useful in development of systems they attempt to pursue.

KEYWORDS:

Hardware Design, Hardware Design Procedure, Digital Design, Formal Specification and Modelling, Formal

Verification, Formal Validation

INTRODUCTION

Hardware design and implementation involves taking a specification through the steps required to

represent that specification in hardware [1]. An understanding of design methodology, hardware

description and verification and validation are necessary to the successful development of the required

hardware [1]. This chapter presents the structured approach to be utilized in the development of the

novel multi-precision floating-point multiplier architecture to be developed in the subsequent chapters

of this paper. Formal specification and modelling of digital systems will be presented in this chapter.

Formal verification and validation techniques for digital systems will also be presented. The concept

design of the precision floating-point multiplier architecture will also be derived in this chapter.

FORMAL SPECIFICATION AND MODELLING OF DIGITAL SYSTEMS
Formal Specification and Modelling involves partitioning of system into two components:

Datapath and Controlpath. The Datapath is responsible for the processing of data entering the system,

including operations such as addition, multiplication, rounding, etc. The Controlpath on the other

hand is responsible for the management of the data processing process, hence the management of the

Datapath. It assumes the role of manager/controller in the digital system. In formal specification and

modelling a structured design approach by Finite State Machine-Datapath (FSM-D) modelling is

utilized. In this case the Controlpath is implemented as a finite state machine and the Datapath is

managed by it. The concept of (FSM-D) modelling is shown in Figure I.

http://ijetrm.com/
mailto:marcus.george99@yahoo.com

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [30]

DATAPATH

CONTROLPATH

Interface between Datapath and Controlpath

Data Inputs

Control Inputs

Data Outputs

Control Outputs

FIGURE I: CONCEPT OF THE FSM-D ARCHITECTURAL MODEL

The specification and modelling procedure consists of several important stages, all crucial in

guaranteeing corrected functionality of the system to be developed. The first step involves the

development of the FSM-D interface definition that can be easily derived from the system

specifications. For this section assume a system TEST_X requires the specification and modelling of a

unit which implements equation (1). Also, consider that data processed in this system will be in 32-bit

floating-point format.

)()(8)1()(nqnpnhknh
 (1)

From the specifications the system will have three 32-bit inputs k, p(n) and q(n) and a 32-bit

output h(n). The system will have a controller and as such will have clock ‘clk’ as well as a reset

‘RESET’ for initialization. The overall process must be initiated by an input port ‘start’ and the

indication of the end of the process will be done via an output port named ‘done’. Figure II gives the

FSM-D interface definition for System TEST_X.

FSM-D INTERFACE

DEFINITION

clk

resetRESET

done

start

p(n)

k
32

32
q(n)

32

h(n)
32

FIGURE II: FSM-D INTERFACE DEFINITION FOR SYSTEM TEST_X

The second step involves the development of the data flow diagram using the system

specifications. Dataflow diagrams represent systems as a series of data manipulation and transfer

operations. When developing a dataflow diagram the arithmetic operations required must be first

identified. In digital signal processing each operation is represented by a symbol as shown in Figure

III.

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [31]

×a

b

x

x = a × b

Multiplication

÷a

b

x

x = a ÷ b

Division

+a

b

x

x = a + b

Adder

−a

b

x

x = a − b

Subtractor

+a

x = ∑a

Accumulator

x

Delaya x

x = a[n-1]

Delay

+1 n

n = n+1

Counter

FIGURE III: SYMBOLS FOR DIGITAL SIGNAL PROCESSING OPERATION

The third step of the formal specification and modelling procedure involves the construction of

the datapath design of the required system, for this process the dataflow diagram is utilized as it

provides less descriptive version of the datapath design. The specification and modelling procedure

may involve the application of pipelining to the dataflow diagram. In applications where the path

delay of the system is substantially shorter than the time elapsed between application of inputs, there

is no need to apply pipelining e.g. if the system that implements equation (1) has a path delay of 16ns

but is required to perform the computation of h(n) once every 9 ms, then a pipelined version of the

system that implements equation (1) is not required. The use of registers will be solely for

stabilization of inputs of components in order to have their outputs valid for a longer period of time,

eg. if a floating-point multiplier was utilized for computation of the product of k and h(n-1) but

however the multiplier kept the result kh(n-1) valid for half a clock cycle after the result was

computed. As such a pipeline register would have been required to hold this product stable for longer

than half of a clock cycle.

The forth step of the formal specification and modelling procedure involved the development of

the datapath block diagram of the system using the dataflow diagram developed in the previous step.

This required the inclusion of the ports and the respective port widths for all components utilized.

Ports interfacing with the control path were also included, hence making the development of the

FSM-D model for the system easier. The datapath block diagram of the system that implements the

equation (1) is given in (Figure IV).

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [32]

FIGURE IV: DATAPATH DESIGN OF THE UNIT IMPLEMENTING SYSTEM TEST_X

The fifth step consisted of the development of the FSM-D model for the system. First the

Datapath Interface Definition was developed by analysing the datapath and deriving its inputs and

outputs. The inputs and outputs making up the interface of the datapath with the controlpath were

carefully derived and identified. The Controlpath Interface Definition was then derived using the

datapath and the FSM-D interface definition obtained previously. Both datapath interface definition

and controlpath interface definition were combined to give the FSM-D model for the system. The

FSM-D model for the system that implements the equation (1) is given in Figure V.

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [33]

DATAPATH
clk

resetRESET

p(n)

k
32

32

s
ta

rt
_
m

u
lt

ip
ly

2

s
to

re
_

A

s
to

re
_

B

h(n)
32

CONTROLPATH

clk

resetRESET

s
ta

rt
_
m

u
lt

ip
ly

2

s
to

re
_

A

s
to

re
_

B

donestart

d
o

n
e

_
m

u
lt

ip
ly

2
d

o
n

e
_

m
u

lt
ip

ly
2

s
to

re
_

C
s
to

re
_

C

s
to

re
_

D
s
to

re
_

D

s
ta

rt
_
m

u
lt

ip
ly

1
s
ta

rt
_
m

u
lt

ip
ly

1

d
o

n
e

_
m

u
lt

ip
ly

1
d

o
n

e
_

m
u

lt
ip

ly
1

q(n)
32

FIGURE V: THE FSM-D ARCHITECTURAL MODEL FOR SYSTEM TEST_X

The sixth and final step involves the design of the controlpath of the system by analysis of the

operation of the datapath design and system specs. First the state transition table [2] is derived, after

which the state diagram [2] is constructed. The state diagram of system TEST_X is seen in Figure VI.

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [34]

reset_sd

reset = 1

idle_sd

start = 1

start = 0

storeA_sd

multiply1_sd

wait1_sd

storeB_sd

done_multiply1 = 1

done_sd

done_multiply1 = 0

multiply2_sd

wait1_sd

storeC_sd

done_multiply2 = 1

done_multiply2 = 0

storeD_sd

FIGURE VI: STATE DIAGRAM FOR THE CONTROLPATH OF SYSTEM TEST_X

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [35]

CHOICE OF DEVELOPMENT TECHNOLOGY FOR SYSTEM IMPLEMENTATION

This section will compare three hardware development technologies: Complex Programmable

Logic Devices (CPLDs), Field Programmable Gate Arrays (FPGAs) and Custom Application Specific

Integrated Circuits (ASICs). This section will give the strengths and weaknesses of these

technologies.

FPGAs consist of an array of gates that must be configured into specific hardware blocks. These

blocks may range from registers, adders and multipliers to more complicated units that are capable of

performing FIR filtering operations and FFT [5]. The main difference between FPGAs and CPLDs is

that FPGAs consisted of a significantly larger number of gates than CPLDs. Therefore, much more

complex digital circuits can be implemented on FPGAs than CPLDs. The high capacity of FPGAs for

parallel processing makes them beneficial for tasks that require high computational power and involve

a great deal of repetitive processes. FPGAs may require dedicated hardware resources for every

configuration and datapath for programmes that involve extensive conditional evaluations [5].

ASICs are microchips developed for specific applications such as speech processing and

frequency metering, amongst others. Unlike FPGAs and CPLDs, ASICs are not programmable and

provide only a particular set of functions. ASICs provide several advantages over these technologies

such as higher power efficiency and lower delay.

HARDWARE DESCRIPTION

Hardware description languages (HDLs) such as VHDL, AHDL, Verilog and ABEL provide an

alternative to Boolean equations or gate-level description of digital components. HDLs also provide

high-level constructs that enable designers to describe large circuits such as the development of

libraries that contain components that can be reused in subsequent designs. VHDL is the standard

language for hardware description [3]and enables code to be portable between both synthesis and

simulation tools and device-independent designs.

After implementation using an HDL the digital circuit is synthesized. The process of synthesis

consists of the conversion of a high-level description of the system design into an optimized version

of the gate-level representation of the digital circuit given design constraints and a standard-cell

library. Computer aided logic design tools such as Xilinx ISE and Quartus II can greatly reduce the

design cycle time of digital circuits. With these synthesis tools designers are able to produce

technology-independent, high-level descriptions of digital systems as well as produce technology-

dependent gate-level net-lists for the required digital system.

FORMAL VERIFICATION AND VALIDATION OF DIGITAL SYSTEMS

This section presents two important aspects of digital design – verification and validation. These

two processes are responsible for determining if a digital system meets required specifications and at

the same time fulfils its intended purposes.

A. Verification of Digital Systems
Verification testing is used to confirm that an implemented system functions as required.

Verification testing is done by creation of VHDL test-benches in Xilinx ISE for execution via ISim

that is initiated from the Xilinx ISE Design Suite window. A VHDL test-bench requires the user to

define input stimuli along with timing constraints such as period of the reference clock, delays after

inputs changed, etc. To thoroughly verify a digital system, test cases must be selected to represent

input samples belonging to each of the following categories:

(i) zero inputs

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [36]

(ii) non-zero inputs

(iii) mixture of zero and non-zero values

(iv) small values

(v) medium-sized values

(vi) large values

(vii) mixed small, medium and large values

The verification process is completed by comparison of actual results of functional and timing

simulation from ISim with expected results. Verification testing is considered a success once there is a

100% match between expected and actual values. Functional simulation was used for logic debugging

while timing simulation was employed only for resolving actual timing issues.

B. Validation of Digital Systems
Validation testing is used to establish that a system satisfied an operational requirement [1].

Timing simulation of the implemented system can be used to determine the block latency in

nanoseconds or cycles [1]. Timing simulation can be obtained using ISim from the Xilinx ISE Design

Suite window. The ISim simulator provides designers with a complete, full-featured HDL simulator

that is integrated within the Xilinx ISE Design Suite. Parameters such as path delay and hardware

utilization can be found from synthesis reports, however a better indicator of system performance is

determined from the Post Place and Route Static Timing Report from Xilinx ISE Design Suite.

B.1 Maximum Clock Frequency
The maximum clock frequency is related to the maximum delay for signal propagation in the

system, and hence changing signals faster than this will result in unexpected behaviour of the system.

The maximum clock frequency of a given system depends on several factors such as:

(i) gate delays - signal delays due to logic gate transitions

(ii) wire delays - delays associated with signal propagation along wires

(iii) clock skew

The predominant sources of delay in digital signals come from gate and wire delays.

Proper chip operation requires that path delay constraints must be satisfied whenever digital

signal transition traverse a combinational logic path. Confirmation that every path delay constraint is

satisfied is the most critical verification task that a designer will face. Performing this dynamically is

infeasible because:

(i) it is computationally difficult to establish the number of possible combinations of state and

input variables that can result in transitions for given combinational paths.

(ii) an exponential number of combinational paths may exist through the logic system. Designers

normally statistically signoff on timing of logic circuits using a method that pessimistically

assumes that the logic paths can be sensitized.

The timing closure framework is based solely on static timing analysis that is an efficient, linear-

time verification procedure that identifies critical paths of logic circuits.

B.2 Static Timing Analysis - Post Place and Route Static Timing Analysis
After placement and routing of a design on Xilinx ISE Design Suite, a post-place and route static

timing report is generated. This report incorporates timing delay information hence providing a

comprehensive timing summary of your system. The report’s contents can be customized in order to

assist in determining how well your system meets timing requirements. The system can be redesigned

in order to use less logic levels, allocate more time for specific paths or even for faster operation on

device. Post-place and route static timing allows you two reports: an error report listing timing errors

and all information on associated net and path delay, or a verbose report listing information on delay

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [37]

for all nets and paths. Generally, the static timing report is accurate since it uses the worst case

scenarios. The Post-Place and Route Static Timing Report is used as a final analysis of whether or not

the design has met all timing constraints.

Based on the timing analysis features in Xilinx ISE Design Suite, the following can be deduced

about the estimated design performance:

 All performance estimates for the system are available prior to completion of system

implementation.

 Generated Synthesis Reports

– logic delays indicated are accurate

– routing delays indicated are based on fan-out

– the performance reported generally has a maximum error of 30%

 Post-Map Static Timing Report

– logic delays indicated are accurate

– routing delays indicated are based on placement and fan-out

 Post-Place and Route Static Timing Report

– logic delays indicated are accurate

– routing delays indicated are based on placement, routing and fan-out

– most accurate timing report generated and uses the worst case scenarios

– the performance reported generally has a maximum error of 3%

One very important point to note is that this simulation tools from Xilinx ISE Design Suite are

adaptive to the clock frequency of the hardware of the host platform used in simulation. The

performance of the post-place and route static timing report the performance reported generally has a

maximum error of 3%. The structure of the Post-Place and Route Static Timing Report is:

 Timing Constraints

– Indicates the number of paths covered and also the number of paths that failed for each

constraint considered

– Provides detailed descriptions of the longest paths for the design

 Data Sheet Report

– Indicates the setup-times, hold-times and clock-to-out times for each I/O pin for the

system

 Timing Summary

– Indicates timing errors, clearly stating the number of failing paths for the system

– Indicates the timing score which is the total time of all constraints that were missed

 Timing Report Description

– Allows designer to duplicate the report

The following is the attributes of a sample post place and route static timing report:

 Constraint Summary

– Number of paths analyzed (defaults to the three longest paths)

– Number of timing errors

– Length of critical path (slowest delay paths for each constraint indicated)

 Total Delay

– Clock and data breakdown

 Clock Jitter Analysis (Slack, Required Arrival time (RAT), Actual Arrival Time (AAT))

– Slack = AAT(v) - RAT(v)

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [38]

– maximum path delay, requires that AAT at each node never exceed the RAT, hence

for all nodes: AAT(v) - RAT(v) must always be negative.

– Critical paths or critical nets are signals that have negative slack, while non-critical

paths or non-critical nets have positive slack.

 Detailed Path Description

– Delay types are described in the data sheet

– Worst-case conditions are assumed, unless pro-rated

C. Performance Verification using Post-Place & Route Simulation Model
At the end of the verification and validation processes of section A and B of this paper

respectively, it is useful to evaluate the system’s performance by generation of the Post-Place and

Route Simulation Model. With this option you would be able to generate a simulation model after

placement and routing of the design. In this process the NetGen converts the post place and route

static timing results (in the form of a NCD file) to a simulation model (in the form of a structural

SIMPRIM-based VHDL file) and a Standard Delay Format (SDF) file. The SDF file consists of true

timing delay information for the design. The simulation model file and SDF file may be used for

verification of the functionality and timing of the design.

Whereas the synthesis report may have a maximum error of approximately 30% and the post

place and route static timing report may have a maximum error of approximately 3%, this post place

and route simulation model report is a bit more accurate. However, the post place and route static

timing report may be sufficient to verify the functionality and timing of the system.

CONCLUSION

This paper therefore presented a concise methodology for the development of complex digital

electronics systems. It focused on all aspects including the specification, formal specification and

modelling of the system, the choice of development platforms, hardware description, and even the

formal verification and validation of such system. An example was utilized in the presentation of the

methodology to ensure that the material can be better understood. It is expected that developing

digital design engineers find this methodology useful in development of systems they attempt to

pursue.

ACKNOWLEDGEMENT

The author would like to thank the staff at Ultimate Virtual Market Limited for their contribution to the

development of this paper. We are grateful for the support provided by the company in this research.

REFERENCES

[1] George, Marcus, and Geetam Singh Tomar. 2015. “Hardware Design Procedure: Principles
and Practices”. 5th International Conference on Communication Systems and Network
Technologies, 4-6 April, 2015, 834 - 838. New York: IEEE. DOI: 10.1109/CSNT.2015.198.

[2] Wakerly, J. 1999. Digital Design Principles and Practices. 4th ed. New York: Prentice Hall.
[3] IEEE (Institute of Electrical and Electronic Engineers). 2009. IEEE Standard VHDL Language

Reference Manual. New York: IEEE.
[4] IEEE (Institute of Electrical and Electronic Engineers). 2008. 754-2008 - IEEE Standard for

Floating-Point Arithmetic. Revision of ANSI/IEEE Std 754-1985. New York: IEEE.

http://ijetrm.com/

ISSN: 2456-9348
Vol (03) _Issue (07) Impact Factor: 4.520

International Journal of Engineering Technology Research & Management

IJETRM (http://ijetrm.com/) [39]

[5] Dick, C. 2000. Choosing DSP or FPGA for your Application. January 03.
http://www.hunteng.co.uk/info/fpga_dsp.htm (accessed 17 July, 2010).

[6] Dick, C. 1999. FPGAs: The High-End Alternative for DSP Applications. December 29.
http://www.hunteng.co.uk/pdfs/tech/DSP1736FPGA.htm (accessed 17 July, 2010).

[7] Perry, D. 1998. VHDL. 3rd ed. New York: McGraw-Hill.
[8] Benini, L., and G. D. Micheli. 1996. “Automatic Synthesis of Low-Power Gated Clock Finite-

State Machines”. IEEE Transactions on CAD 15 (6): 630–643.
[9] Cheng, Fu-Chiung, Stephen H. Unger, Michael Theobald, and Wen-Chung Cho. 1997. “Delay-

Insensitive Carry-Look Ahead Adders”. Proceedings of 10th International Proceedings VLSI
Design, Conference, 4-7 January, 1997. 37-63. New York: IEEE.

[10] Erle, Mark A, Brian J. Hickmann, and Michael J. Schulte. 2009. “Decimal Floating-Point
Multiplication”. IEEE Transactions on Computers 58 (7): 902–916.

[11] Koren, Israel. 2001. Computer Arithmetic Algorithms. 2nd ed. Natick, Massachusetts: A. K.
Peters.

http://ijetrm.com/
http://www.hunteng.co.uk/info/fpga_dsp.htm
http://www.hunteng.co.uk/pdfs/tech/DSP1736FPGA.htm

